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Power Round

Welcome to the power round! This year’s topic is the theory of orthogonal polynomials.

I. You should order your papers with the answer sheet on top, and you should number papers
addressing the same question. Include your Team ID at the top of each page you submit.

II. You may reference anything stated or cited earlier in the test, even if you do not understand
it. You may not reference outside sources or proofs to answers not given on the same page.

III. You have 60 minutes to answer 16 questions, cumulatively worth 100 points. Good luck!

0 Introduction

As far as I am concerned, the primary purpose of a power round is to show you, the students, what
it is like to do mathematics at the university level. I take my responsibility as a representative of
higher education very seriously, and I hope you will enjoy some “Eureka” moments during this test.
I encourage you most of all to read everything, for even unsolved problems may be understood later.

I have included a series of conceptual questions on this test that account for approximately one
quarter of all possible points. You should try to figure out the motivation behind the question and
review the recent material to determine how best to answer. If a problem does not explicitly require
demonstration of a proof or computation, you may optionally choose to supplement your answer
with either. However, if you see terms such as prove, verify, or determine, proof techniques are
required for full points. Problems with spots provided on the answer sheet require no explanation.

Think critically. A mathematician always knows exactly what she is talking about, and you may
try to do the same by paying careful attention to the definitions. A good beginning is your best
way to partial credit on the harder questions, so make sure you do know what you are talking about.

The set of natural numbers is {0, 1, 2, . . . }. A natural (number) n is an element of this set.
The set of real numbers is R. A real number c is a number found on the number line.

A polynomial is a function p, from the real numbers to the real numbers, that has the form
p(x) = anx

n + an−1x
n−1 + · · ·+ a0 for real numbers an, an−1, . . . , a0 (where an 6= 0 or n = 0) and

natural n. The degree of the polynomial is n. A root of the polynomial is a value c such that
p(c) = 0. The Fundamental Theorem of Algebra states that polynomials of degree n have at
most n roots. By convention, this test only contains polynomials with x as the parameter.

One term I use but do not define is function space. Formally, I mean a vector space (over the real
numbers) whose elements are functions sharing domain and codomain. Informally, I mean a set of
real-valued functions you can add together. Some examples of function spaces are the set of real
numbers R (i.e., the collection of constant functions from R to R), the set of polynomials P, and
the set of functions f ba of the form f ba(x) = a · ex + b · 3

√
x for some real numbers a and b.
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1 Functionals (24 pts)

All areas of mathematics have some concept of mapping crucial to development of the theory. A
function maps elements from one value to another. The domain is the set of values on which the
function is defined, and the codomain is the set of possible values into which the function maps.
The range is the precise set of values the function can achieve. The function f : [0, ∞) → R
defined by f(x) = x2 +

√
x+ 1 has domain [0, ∞), codomain R, and range [1, ∞). Henceforth, we

will speak only of real-valued functions— functions whose codomain is the set of real numbers.

• A functional maps (real-valued) functions to real numbers. Its domain is a function space,
and its codomain is the set of real numbers.

• A linear functional is a functional T satisfying:

1. For all functions f and g in its domain, T(f + g) = T(f) + T(g).

2. For all real numbers c and functions f in its domain, c ·T(f) = T(c · f).

(The term function space is defined in the introduction.)

For instance, a functional Lead : P → R may take a polynomial as input and return the coefficient
of the term of highest degree, mapping (2x2 + 3x+ 1) 7→ 2 and (2x2 + 3x3 + 1) 7→ 3.

1. The following functionals are linear. Use the properties of linearity to determine the answers.

(a) [1] If A(1) = 2 and A(x) = 3, find A(2x− 1).

(b) [1] If B(2x+ 1) = 0, B(2x2− 4x+ 6) = 6, and B(x3 + 7x) = 8, find B(x3 + x2 + x+ 1).

(c) [1] If C(cosx) = 4 and C(sinx) = 2
√

3, find C(sin(x+ π
3 )).

(d) [1] If D(xk) = 2k − 1 for all natural k, find D((2x− 1)10).

Solution to Problem 1:
1. (a) A(2x− 1) = 2A(x)−A(1) = 4.

(b) B(x3 + x2 + x+ 1) = B(x3 + 7x) + 1
2B(2x2 − 4x+ 6)− 2B(2x+ 1) = 11.

(c) C(sin(x+ π
3 )) = 1

2C(sinx) +
√
3
2 C(cosx) = 3

√
3.

(d) Note D = 2Ev1 ◦ d
dx −Ev1 for polynomials. Thus,

D((2x− 1)10) = 2Ev1(
d
dx((2x− 1)10))−Ev1((2x− 1)10)

= 2Ev1(20(2x− 1)9)−Ev1((2x− 1)10) = 39.

2. For each of the following, prove the statement or provide a counterexample.

(a) [2] Every (real-valued) function is a functional.

(b) [2] Every functional is a (real-valued) function.

(c) [2] The codomain of a functional is always contained in its domain.
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Solution to Problem 2:
2. (a) Not all functions are functionals. For instance, a function f : Animals→ R mapping

an animal to the number of legs it has is not a functional, since animals are not
functions.

(b) Every functional is a function, since a functional is just a function that takes a
function as an input.

(c) The codomain of a functional is not necessarily contained in its domain. For in-
stance, the functional Lead restricted to nonconstant polynomials does not contain
the real numbers in its domain.

3. Answer each of the following questions in a clear and concise manner.

(a) [3] Why is it conventional to use codomain instead of range when defining a function?

(b) [3] Is there such a thing as an “inverse functional”? For instance, can you construct a
mapping Λ : R→ P that is an inverse to Lead? What limitations, if any, are there?

(c) [4] Consider the functional Ev2(ϕ) = ϕ(2) and the function f(x) = xy+z, where y and z
are fixed constants. Explain the difference in meaning between Ev2(f) and Ev2(xy+z).
Now, consider the function g(x) = x2 + x. Explain the difference in meaning between
Ev2(g) and Ev2(x

2 + x). Is either mistake acceptable? Is it possible to avoid this type
of mistake without separately defining a function, as done here?

Solution to Problem 3:
3. (a) Here are three possible reasons, roughly ordered to the writer’s preference.

i. If instead it were conventional to use range when defining a function, one would
need to know a priori the set of possible values the function could achieve.
Since the function is only just being defined, it seems reasonable to presume
that those values may not all be known. Certainly in some cases (extrema of
bounded continuous functions), the range provides much information about the
function itself.

ii. Without codomain, there would be no concept of surjectivity. Isomorphism
theorems would weaken, and much of algebra would collapse into trivialities.
There’s a lot to say about a space even when function mappings into and out
of the space don’t line up exactly (e.g., homology).

iii. It’s easier to define the function without thinking about what exactly the func-
tion is— only what it could be.

(b) There is not exactly an inverse functional, but there is something partial. The
mapping Λ : c 7→ c · x2, for instance, acts as a right inverse to Lead; that is,
Lead(Λ(c)) = c for all real numbers c. It is impossible to create a left inverse
to Lead because it is a noninjective function from P to R; that is, for any given
nonzero real number, there are multiple polynomials yielding it upon application of
Lead. A right inverse does exist at 0 (and only 0), though.

(c) Ev2(f) means the result of applying the functional Ev2 to the function f , which is
well-defined to be f(2) = 2y+ z. Ev2(xy+ z) literally means the result of applying
the functional Ev2 to the function xy+z; however, xy+z is an expression and not a
function, so the meaning is not well-defined here. Only with the understanding that
xy+ z is shorthand for the function f(x) = xy+ z may any meaning be ascribed to
the expression, and in that case, the result is, again, 2y + z. Similarly, Ev2(g) and
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Ev2(x
2 +x) both evaluate to g(2) = 6, but the second expression is unclear without

context upon realizing x could be a function. The mistake is more acceptable in
the latter case, for it can be expected that x is the active variable in the expression;
however, ambiguity arises in the former case where, for instance, h(z) = xy + z
would yield a different output than f when passed through Ev2. One may write
Ev2(x 7→ (xy + z)) to resolve this ambiguity without the need to define a function.

We will now restrict our attention to P, the function space of polynomial functions. For any real
numbers a < b, we define a linear functional Int[a, b] with domain P as follows.

For any natural n, Int[a, b](x
n) =

bn+1 − an+1

n+ 1
.

Using the definition of linearity, we may extend this definition to all polynomials. For instance,

Int[0, 1](6x
2 + 2x+ 7) = 6 · Int[0, 1](x2) + 2 · Int[0, 1](x) + 7 · Int[0, 1](1)

= 6 ·
(

13 − 03

3

)
+ 2 ·

(
12 − 02

2

)
+ 7 ·

(
11 − 01

1

)
= 2 + 1 + 7 = 10.

In fact, the definition for Int[a, b] can be extended to functions beyond just polynomials. A purely
formulaic reason for this is that well-behaved functions can be approximated very well by polynomial
functions. But for this test, it is only necessary to know how to apply the functional to polynomials.

4. (a) [1] Evaluate Int[0, 2](3x
2 + 2x).

(b) [1] Evaluate Int[1, 3](x
7 + x3).

(c) [2] Prove that for any polynomial p and real numbers a < b < c,

Int[a, b](p) + Int[b, c](p) = Int[a, c](p).

Solution to Problem 4:
4. (a) The expression is evaluated as follows.

Int[0, 2](3x
2 + 2x) = 3 · Int[0, 2](x2) + 2 · Int[0, 2](x)

= 3 ·
(

23 − 03

3

)
+ 2 ·

(
22 − 02

2

)
= 8 + 4 = 12.

(b) The expression is evaluated as follows.

Int[1, 3](x
7 + x3) = Int[1, 3](x

7) + Int[1, 3](x
3)

=
38 − 18

8
+

34 − 14

4

= 820 + 20 = 840.
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(c) For any natural n,

Int[a, b](x
n) + Int[b, c](x

n) =
bn+1 − an+1

n+ 1
+
cn+1 − bn+1

n+ 1

=
cn+1 − an+1

n+ 1

= Int[a, c](x
n).

It then follows from the linearity of Int[a, b], Int[b, c], and Int[a, c] that the equivalence
holds for any polynomial p.

It may be useful later to note that for any real numbers a < b and polynomial p, there exists a value
c satisfying a < c < b such that Int[a, b](p) = (b− a) · f(c). This is the Mean Value Theorem.
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2 Simple Orthogonality (25 pts)

Two polynomials f and g are simply orthogonal if

Int[−1,1](f · g) = 0.

A set of polynomials is simply orthogonal if any distinct two of its elements are simply orthogonal.

5. Which of the following sets are simply orthogonal?

(a) [2] {1, x}; {1, x2}; {x, x2}; {1, x2 − 1
3}; {x

2 − 1, x3}
(b) [2] {1, x, x2}; {1, x, 3

2x
2 − 1

2}; {1, x
2 − 1, x3}; {1, x2 − 1

3 , x
3 + 2x}

Solution to Problem 5:
5. (a) The simply orthogonal sets are {1, x}, {x, x2}, {1, x2 − 1

3}, and {x2 − 1, x3}.
(b) The simply orthogonal sets are {1, x, 3

2x
2 − 1

2} and {1, x2 − 1
3 , x

3 + 2x}.

6. For each of the following, find a nonzero function satisfying the given condition, or prove none
exist.

(a) [2] Find a linear polynomial simply orthogonal to each of 1, x2 − 1
3 , and x3 + 2x.

(b) [2] Find a cubic polynomial simply orthogonal to each of 1, x, and x2 − 1
3 .

Solution to Problem 6:
6. (a) There is no such polynomial. Suppose one does exist and is ax+ b, for real a and b.

Then,

Int[−1, 1](ax+ b) = 0 =⇒ a ·
(

12 − (−1)2

2

)
+ b · (1− (−1)) = 0 =⇒ b = 0, and

Int[−1, 1](ax
4 + bx3 + 2ax2 + 2bx) = 0 =⇒ a · (25 + 2 · 23) + b · (0 + 2 · 0) = 0 =⇒ a = 0.

Thus, the “linear” polynomial is in fact the zero polynomial, and by way of contra-
diction, we have proved our claim.

(b) Any nonzero multiple of the polynomial x3 − 3
5x would suffice.

A function f is symmetric if f(c) = f(−c) for all c in its domain. A function f is antisymmetric
if f(c) = −f(−c) for all c in its domain. For polynomials, the domain is all real numbers.

7. Answer the following questions on symmetric and antisymmetric polynomials.

(a) [2] Prove that if a polynomial is symmetric, then each of its terms has even degree.

(b) [2] Prove that if a polynomial is antisymmetric, then each of its terms has odd degree.

(c) [1] Prove, for any antisymmetric polynomial p, that Int[−1, 1](p) = 0.

Solution to Problem 7:
7. (a) Let p be a symmetric polynomial. Then, p(c) − p(−c) = 0 for all real c, implying

the polynomial p(x)−p(−x) is in fact the zero function (the Fundamental Theorem
of Algebra implies a polynomial may have only finitely many roots). But suppose
there is a term of odd degree in p; then p(x) − p(−x) has the same term of odd
degree (with coefficient doubled), a contradiction. Therefore, p contains only terms
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of even degree.

(b) Let p be an antisymmetric polynomial. Then, p(c)+p(−c) = 0 for all real c, implying
the polynomial p(x) +p(−x) is in fact the zero function (the Fundamental Theorem
of Algebra implies a polynomial may have only finitely many roots). But suppose
there is a term of even degree in p; then p(x) + p(−x) has the same term of even
degree (with coefficient doubled), a contradiction. Therefore, p contains only terms
of odd degree.

(c) Note first that for any odd k, k + 1 is even and

Int[−1, 1](x
k) =

1k+1 − (−1)k+1

k + 1
= 0.

Let p be an antisymmetric polynomial. Then p only has terms of odd degree. It
follows from linearity of Int[−1, 1] that Int[−1, 1](p) = 0.

The Legendre polynomials comprise a sequence of simply orthogonal polynomials, the nth of
which is degree n. Any one Legendre polynomial is orthogonal to any other Legendre polynomial.
They begin P0(x) = 1 and P1(x) = x and are subject to the standardization Pn(1) = 1 for all
natural n. They are uniquely determined by this definition, but an equivalent definition is

Pn+1(x) =

(
2n+ 1

n+ 1

)
xPn(x)−

(
n

n+ 1

)
Pn−1(x) for all natural n > 0.

8. (a) [2] Compute P2(x), P3(x) and P4(x).

(b) [2] Prove that all terms of a Legendre polynomial have the same parity of degree.

(c) [2] Verify with computation or proof that P4 is orthogonal to P0, P1, P2, and P3.

Solution to Problem 8:
8. (a) P2(x) = 3

2x
2 − 1

2 , P3(x) = 5
2x

3 − 3
2x, and P4(x) = 35

8 x
4 − 15

4 x
2 + 3

8 .

(b) Let n be a natural number. We claim that all terms of the nth Legendre polynomial
have the same parity as n. This is true for the zeroth and first Legendre polynomials.
Suppose it is true for Legendre polynomials k and k − 1, where k > 0. Then, from
the recursive definition of Legendre polynomials, Pk+1 has terms of the same parity
as Pk−1 and terms of the opposite parity as Pk. If k + 1 is odd, this implies Pk+1

only has terms of odd parity, and if k + 1 is even, this implies Pk+1 only has terms
of even parity. By the principle of mathematical induction, our claim holds, and we
conclude that the problem statement is true.

(c) By a property of antisymmetry, it is immediate that P4 is orthogonal to P1 and P3.
Note, then, that P4 is orthogonal to P0:

Int[−1, 1](
35
8 x

4 − 15
4 x

2 + 3
8) = 35

8 ·
2
5 −

15
4 ·

2
3 + 3

8 · 2 = 7
4 −

5
2 + 3

4 = 0.

And note that P4 is orthogonal to P2:

Int[−1, 1](
105
16 x

6 − 125
16 x

4 + 39
16x

2 − 3
16) = 105

16 ·
2
7 −

125
16 ·

2
5 + 39

16 ·
2
3 −

3
16 · 2 = 0.
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9. (a) [2] Express x3 as a sum of distinct nonzero multiples of Legendre polynomials.

(b) [4] The team across the room got a different answer for part (a). Prove them wrong.

Solution to Problem 9:
9. (a) x3 = 2

5P3(x) + 3
5P1(x).

(b) Suppose the team is right and has representation Sum(x) = x3, where Sum(x)
is a sum of distinct nonzero multiples of Legendre polynomials. Then, Sum(x) −
2
5P3(x) − 3

5P1(x) = x3 − x3 = 0 is a sum of distinct nonzero multiples of Legendre
polynomials after combining like terms, and Sum(x)− 2

5P3(x)− 3
5P1(x) is nonzero

because the team got a different answer. Therefore, there must be a greatest n
such that Pn is present in the sum (with nonzero coefficient). But then 0 = c ·
xn + lower order terms for some nonzero real number c. As we have reached a
contradiction, we must conclude the other team is wrong.

For more on Legendre polynomials, go directly to Section 4. For more on orthogonal polynomials
in general, continue to Section 3.
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3 Orthogonal Polynomials (28 pts)

More generally, orthogonal polynomials arise in a space equipped with an inner product. Inner
products are two-variable functions that are linear functionals in either variable. In particular, we
are concerned with inner products of the following form, where a and b are real numbers and w is
a polynomial that is positive throughout the interval (a, b).

〈p, q〉 = Int[a, b](p · q · w) for all polynomials p and q.

Two polynomials p and q are orthogonal if 〈p, q〉 = 0. As with Legendre polynomials, we may
construct sequences of orthogonal polynomials. Henceforth, the term orthogonal polynomials
refers to a sequence of polynomials orthogonal to each other, the nth of which is degree n. The
Gram-Schmidt process provides an immediate method of creating some orthogonal polynomials:

pn(x) = xn −
n−1∑
k=0

〈xn, pk〉
〈pk, pk〉

pk(x) for all natural n.

10. (a) [3] Prove that the Gram-Schmidt process does produce orthogonal polynomials.

(b) [3] Prove that any polynomial may be expressed as a sum of distinct nonzero multiples
of orthogonal polynomials in precisely one way.

Solution to Problem 10:
10. (a) Consider a sequence {p0, p1, p2, . . . } of polynomials produced by the Gram-Schmidt

process. Let a polynomial pn (n natural) be known as fully orthogonal if pn is
orthogonal to pk for all natural k < n. Trivially, p0 is fully orthogonal. Suppose
that all polynomials up to n are fully orthogonal. Then, for any m < n+ 1,

〈pn+1, pm〉 = 〈xn+1, pm〉 −
n∑
k=0

〈xn+1, pk〉
〈pk, pk〉

· 〈pk, pm〉 = 〈xn+1, pm〉 − 〈xn+1, pm〉 = 0.

So by the principle of mathematical induction, any two polynomials produced by
the Gram-Schmidt process are orthogonal.

(b) Note that any degree 0 (constant) polynomial may be expressed in such a way, as
a multiple of the zeroth orthogonal polynomial. Suppose, for some natural n, that
all polynomials of degree at most n may be expressed in such a way. Then, any
polynomial p(x) of degree n+ 1 is equal to c · pn(x) + q(x) for some polynomial q(x)
of degree at most n, where pn(x) is the nth orthogonal polynomial. This implies
that p(x) is the sum of distinct nonzero multiples of orthogonal polynomials. By the
principle of mathematical induction, any polynomial may be expressed in such a way.

Suppose that there are multiple such expressions. Then, the polynomial p(x) may
be expressed as a sum of distinct nonzero multiples of orthogonal polynomials in
more than one way. Consider the difference between two such ways. Since they are
different, it is of the form cnpn(x) + cn−1pn−1(x) + · · · + c0p0(x) = 0 for some real
numbers cn, cn−1, . . . , c0 (where cn 6= 0) and natural n. The left hand side is a
polynomial of degree n, since pn has degree n, cn is nonzero, and the other terms
have degree less than n. But this cannot be equal to 0. We conclude that there
must be precisely one such expression for any polynomial.

9
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11. Let n be a nonzero natural number.

(a) [2] Prove that 〈pn, q〉 = 0 for all polynomials q of degree less than n.

(b) [2] Prove that if p is a nonzero polynomial that is nonnegative throughout the interval
(a, b), then Int[a, b](p) > 0. (Refer to the end of Section 1 for a relevant theorem.)

(c) [4] Prove that pn(x) has precisely n distinct real roots in the interval (a, b).

Solution to Problem 11:
11. (a) By problem 10(b), we may express q as a sum of distinct nonzero multiples of

orthogonal polynomials. Furthermore, the degree of q is equal to the greatest k
such that pk is present in the sum, since pk has degree k and all other terms in the
sum have degree less than k. Thus, any orthogonal polynomial present in the sum
has degree strictly less than n and therefore is not pn; their inner product must be 0.
Due to the linearity of 〈pn, q〉 in the second variable, we conclude that 〈pn, q〉 = 0.

(b) By the Fundamental Theorem of Algebra, p(x) cannot be zero for all x in the interval
(a, b). Let α be a value for which p(α) 6= 0. Let r1 be the maximum of a and the
greatest root of p less than α, and let r2 be the minimum of b and the least root of
p greater than α. Then, by the Mean Value Theorem, there exists a value c where
r1 < c < r2 such that Int[r1, r2](p) = (r2 − r1)p(c). But p(x) is positive for all x
in the interval (r1, r2), whence Int[r1, r2](p) > 0. Similarly, Int[a, r1](p) ≥ 0 and
Int[r2, b](p) ≥ 0. Therefore, by problem 4(c),

Int[a, b](p) = Int[a, r1](p) + Int[r1, r2](p) + Int[r2, b](p) > 0.

(c) Let r1, r2, . . . , rk be the roots of pn(x) that are real, are in the interval (a, b),
and have odd multiplicity. Let q(x) = (x − r1)(x − r2) · · · (x − rk), and consider
〈pn, q〉. Note pn · q · w is a nonzero polynomial that is nonnegative throughout
the interval (a, b). Therefore, by problem 11(b), 〈pn q〉 > 0. However, by problem
11(a), 〈pn, q〉 = 0 if q has degree less than n. Therefore, q must have degree n, and
k = n. By the Fundamental Theorem of Algebra, we conclude that pn(x) must have
precisely n distinct real roots in the interval (a, b).

In the study of orthogonal polynomials, two values assist in characterizing the relation between
different elements of the sequence. We define sequences of these values in the following way. (Recall
the functional Lead from Section 1 that returns the leading coefficient of a polynomial.)

kn = Lead(pn) and hn = 〈pn, pn〉.

12. Let {p0, p1, p2, . . . } be orthogonal polynomials.

(a) [4] Prove, for some natural n > 0 and real numbers an and bn independent of x, that

pn+1(x)− kn+1

kn
· xpn(x) = anpn(x) + bnpn−1(x).

(b) [2] Determine the value of bn in terms of hn+1, kn+1, hn, kn, hn−1, and kn−1.

10
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Solution to Problem 12:
12. (a) Note that pn+1(x) − kn+1

kn
· xpn(x) has no term of degree xn+1, so its degree is at

most n. By problem 10(b), there exist real numbers c(n)n , c(n−1)n , . . . , c(0)n such that

pn+1(x)− kn+1

kn
· xpn(x) =

n∑
k=0

c(k)n pk(x).

If n = 1, we are done; otherwise, let m < n− 1 be a natural number. Note that

〈pn+1, pm〉 −
kn+1

kn
· 〈xpn, pm〉 =

n∑
k=0

c(k)n 〈pk, pm〉

−kn+1

kn
· 〈pn, xpm〉 = c(m)

n 〈pm, pm〉.

By problem 11(a), 〈pn, xpm〉 = 0 since xpm(x) is a polynomial of degree less than n.
Thus, c(m)

n = 0 for all m < n− 1. With the substitutions an = c(n)n and bn = c(n−1)n ,
we conclude the desired equivalence

pn+1(x)− kn+1

kn
· xpn(x) = anpn(x) + bnpn−1(x).

(b) Note that xpn−1(x) = kn−1

kn
pn(x) + q(x), where q is a polynomial of degree less than

n. Thus, by problem 11(a), 〈xpn, pn−1〉 = 〈pn, xpn−1〉 = kn−1

kn
〈pn, pn〉 = kn−1hn

kn
.

〈pn+1, pn−1〉 −
kn+1

kn
· 〈xpn, pn−1〉 = an〈pn, pn−1 + bn〈pn−1, pn−1〉

−kn+1

kn
· kn−1hn

kn
= hn−1bn.

We conclude that bn = −kn−1kn+1hn
k2nhn−1

.

13. Answer each of the following questions in a clear and concise manner.

(a) [4] Is there a choice of a, b, and polynomial w that would make the sequence of polyno-
mials {1, x, x2, x3, . . . } orthogonal with respect to the inner product described above?
Why or why not?

(b) [4] What can you say about the relationship between the roots of two distinct orthogonal
polynomials? A false response will get 0 points, while a true response will receive points
in proportion to the strength of its implications.

11
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Solution to Problem 13:
13. (a) No, there is no such choice. Because x2 has only one distinct real root, there is no

interval in which it has two distinct real roots. Therefore, by problem 11(c), the
polynomial x2 cannot be member of a sequence of orthogonal polynomials, regardless
of values a and b and polynomial w.

(b) One strong true statement is the following. False statements regarding the precise
distribution of roots of pn among the roots of pk will be graded with leniency if
they contain valuable content relating to the below statement.

Let n and k be natural numbers, with n > k. Let r1, r2, . . . , rk be the roots
of pk in increasing order. Then pn has a root in each of the k + 1 intervals
(a, r1), (r1, r2), (r2, r3), (rk−1, rk), . . . , and (rk, b).

A slightly weaker statement makes the qualification n = k + 1.

4 Legendre Polynomials (23 pts)

One reason orthogonal polynomials are useful is that they are very good at approximating other
functions. In particular, they provide a solution to the least squares problem for function approxi-
mation. Note our inner product is

〈p, q〉 = Int[−1, 1](p · q) for all polynomials p and q.

Then, a Legendre approximation p of degree n (natural n) to the polynomial q is

p(x) =

n∑
k=0

〈q, Pk〉
〈Pk, Pk〉

Pk(x).

14. (a) [2] Find a Legendre approximation of degree 2 to the function f1(x) = x4.

(b) [2] Find a Legendre approximation of degree 3 to the function f2(x) = x5.

(c) [4] Find with proof a general form for the value 〈Pk, Pk〉 in terms of natural k.

Solution to Problem 14:
14. (a) f1 has degree 2 Legendre approximation p1(x) = 1

5 + 4
7(32x

2 − 1
2) = 6

7x
2 − 3

35 .

(b) f2 has degree 3 Legendre approximation p2(x) = 3
7x+ 4

9(52x
3 − 3

2x) = 10
9 x

3 − 5
21x.

(c) We claim, for all natural k, that

〈Pk, Pk〉 =
2

2k + 1
.

12
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Note the claim holds for k = 0, and suppose it holds for some value k = n. Then,

〈Pn+1, Pn+1〉 = 〈Pn+1(x), 2n+1
n+1 xPn(x)− n

n+1Pn−1(x)〉
= 2n+1

n+1 〈xPn+1(x), Pn(x)〉 − n
n+1〈Pn(x), Pn−1(x)〉

= 2n+1
n+1 〈

n+2
2n+3Pn+2(x) + n+1

2n+3Pn(x), Pn(x)〉

= (2n+1)(n+2)
(n+1)(2n+3)〈Pn+2, Pn〉+ 2n+1

2n+3〈Pn, Pn〉

= 2n+1
2n+3 ·

2
2n+1 by our supposition

= 2
2(n+1)+1 .

By the principle of mathematical induction, we conclude that the claim holds.

15. Draw a graph of a function and one of its Legendre approximations.

(a) [4] Where is the Legendre approximation a close approximation to a function? What
value(s) in particular is (are) minimized by the Legendre approximation?

(b) [3] Prove that the Legendre approximation of degree n of a polynomial of degree n is
the polynomial itself.

Solution to Problem 15:
15. (a) Legendre approximations intersect functions they approximate many times, poten-

tially at least as many times as the degree of the polynomial. The approximation
does not reflect the slope or smoothness of the function in any way. If p is a Legen-
dre approximation of q, then among all polynomials f of the same degree as p, the
value Int[−1, 1]((f − q)2) is minimized.

(b) Note, for any natural m ≤ n, that

n∑
k=0

〈Pm, Pk〉
〈Pk, Pk〉

Pk(x) =
〈Pm, Pm〉
〈Pm, Pm〉

Pm(x) = Pm(x).

Thus, the degree n Legendre approximation of the mth Legendre polynomial is itself.
By problem 10(b), any polynomial may be expressed as a sum of distinct nonzero
multiples of Legendre polynomials. Furthermore, the degree of such a polynomial is
equal to the greatest n such that Pn is present in the sum, since Pn has degree n and
all other terms in the sum have degree less than n. Then, by linearity of the first
component of 〈f, Pk〉 for any natural k, we conclude that the degree n Legendre
approximation of a degree n polynomial is the polynomial itself.

Just as Legendre polynomials may be defined using a recurrence relation, they may be defined with
a series relation as well. For sufficiently small t (say, |t| < 1

2x), the following holds for all x.

∞∑
n=0

Pn(x)tn =
1√

1− 2xt+ t2
.

16. (a) [3] Verify with proof the equivalence for x = 1 and x = −1.

(b) [5] Prove the following identity. For all natural n,

sin((n+ 1)x)

sinx
=

n∑
k=0

Pk(cosx)Pn−k(cosx).

13
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Solution to Problem 16:
16. (a) Let x = 1. Then, Pn(x) = Pn(1) = 1 for all n, by the definition of Legendre

polynomials. Therefore, for sufficiently small t (say, |t| < 1),

∞∑
n=0

Pn(x)tn =
∞∑
n=0

tn =
1

1− t
=

1√
(1− t)2

=
1√

1− 2t+ t2
.

Now, let x = −1. Then, Pn(x) = Pn(−1) = (−1)nPn(1) = (−1)n for all n, as noted
in the proof of problem 8(b). Therefore, for sufficiently small t (say, |t| < 1),

∞∑
n=0

Pn(x)tn =
∞∑
n=0

(−1)ntn =
1

1− (−1)t
=

1√
(1 + t)2

=
1√

1 + 2t+ t2
.

(b) Recall eix = cosx+ i sinx, whence the imaginary part =(eix) = sinx. Therefore,

∞∑
n=0

ei(n+1)xtn =
eix

1− teix
=

(cosx+ i sinx)(1− t cosx+ i sinx)

(1− t cosx)2 + (t sinx)2

for all |t| < 1, from which we deduce

∞∑
n=0

sin((n+ 1)x)tn = =

( ∞∑
n=0

ei(n+1)xtn

)
=

sinx

1− 2 cos(x)t+ t2
.

It follows immediately that

∞∑
n=0

sin((n+ 1)x)

sinx
tn =

(
1√

1− 2 cos(x)t+ t2

)2

=
∞∑
n=0

n∑
k=0

Pk(cosx)Pn−k(cosx)tn.

From a term by term inspection, we conclude the identity holds for all x.
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