
BMT 2014 Symmetry Groups of Regular Polyhedra 22 March 2014

Time Limit: 60 mins.
Maximum Score: 125 points.
Instructions:

1. When a problem asks you to “compute” or “list” something, no proof is necessary. However, for all
other problems, unless otherwise indicated, you must justify your answers.

2. You may freely assume results of a previous problem in proving later problems, even if you have not
proved the previous result.

3. You may use both sides of the paper and multiple sheets of paper for a problem, but separate problems
should be on separate sheets of paper. Label the pages of each problem as 1/2, 2/2, etc., in the upper
right hand corner. Write your team ID at the upper-right corner of every page you turn in.

4. Partial credit may be given for partial progress on a problem, provided the progress is sufficiently
nontrivial.

5. Throughout this round, unless stated otherwise, all groups are assumed to be finite, meaning they
contain finitely many elements.

6. When you see a product of two group elements which represent permutations, symmetry operations,
or group actions in general, for example gh, you should read it from right to left: first apply h, and
then apply g. This is the same convention as for function composition.

7. You may not use without proof results that are not discussed in this round.

8. Calculators are not allowed!

Introduction: This power round deals with symmetry groups. We will begin by introducing groups, which
are just mathematical objects that satisfy some rules. However, even though this definition is abstract, we
will discuss a more intuitive view of groups as the set of symmetries of certain objects. The Zome kits
provided may be helpful in visualizing the polyhedra and their symmetries. The general aim of this round
is to provide a more visual and hands-on view of a subject that is often perceived as dry and abstract,
and to give you a taste of the power of group theory. One of the things that group theory can show us
is the equivalence between seemingly different types of objects, such as symmetries of a polyhedron and
permutations of a set. Throughout this round, you will encounter many such equivalences.

Although different team members may work on different rounds, it is recommended that all team members
at least read the first section, “Introduction to Groups,” so that they are aware of the relevant definitions.
Many of the sections can be solved independently, and those that require definitions and results from previous
sections will say so in their introductions.
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Introduction to Groups (20 Points)

We will begin with the definition of a group. Though it may seem a bit abstract, once we start discussing
groups as symmetries of objects, the concepts should hopefully become more intuitive.

A group, (G, ·) is a set, G, with a binary operation ·, that takes as inputs two elements of the set G
and outputs another element in the set. I.e., if g and h are elements of the set G, then g · h is also in the set
G. In addition, a group must satisfy the following properties:

a. Associativity: If g, h, and k are in G, then (g · h) · k = g · (h · k).

b. Identity Element: There exists an element 1 in G such that, for every element g in the group, g · 1
= 1 · g = g. Note that this “1” is not the same as the number 1, but is a notation used to denote the
identity element. However, since our groups will be written multiplicatively, and the number 1 is a
multiplicative identity, this notation is a convenient way of representing the identity.

c. Inverse Element: For every element g in G, there exists an inverse g−1 such that g · g−1 = g−1 · g =
1, where 1 is the identity element. Note that both directions must equal 1 for g−1 to actually be an
inverse.

For convenience, we will refer to a group as G instead of (G, ·). An element of a group is just an element of
its underlying set. In addition, we will usually omit the · when writing the binary operation: i.e., g · h will
just be written as gh. We will also generally refer to the binary operation as multiplication.

A group G is said to be abelian if multiplication is commutative: if for all elements g, h in G, gh = hg.
Note that groups are not abelian in general.

1. [2] Prove that the integers, Z, form an abelian group under addition.

Note that the integers are not a group under multiplication, since no integer besides 1 and -1 have a
multiplicative inverse: 1 is clearly the identity, but there is no integer n such that 5n = 1, so 5 is not
invertible, and so Z is not a group under multiplication.

2. State why the following are not examples of groups:

a. [2] The nonnegative integers, N0, under addition.

b. [2] The rational numbers, Q, under multiplication.

3. a. [2] Prove that the identity of a group is unique, and that every element has a unique inverse. In
other words, show that if 1 and 1′ are identities, then 1 = 1′, and that if a and b are inverses of
g, then a = b.

b. [2] Prove that if g and h are elements of a group G, then (gh)−1 = h−1g−1.

c. [2] Prove the cancellation laws: If g, h, and k are elements of a group, and if gh = gk, then h = k;
Similarly, if gk = hk, then g = h. Conclude that if gh = g or hg = g, then h = 1.

4. [3] For an element g in G, gk, where k is a positive integer, is the result of multiplying g by itself
k times. In addition, g0 = 1 and g−k = (g−1)k. The order of a group element g is the smallest
positive integer k such that gk = 1. If there is no such positive integer, we say the order of g is ∞. For
example, 1 has order 1. Also, the order of a group is the number of elements in it. Prove that, if G
has finite order, so does any element g in G.

5. [2] If g is an element of order n, prove that g−1 = gn−1.

6. [3] Prove that, if g is an element of a group G and gk = 1, where k is a positive integer, then k is a
multiple of the order of g.

Special Types of Groups

In the following sections, we will familiarize ourselves with some special types of groups and begin to see
how they can be used to describe the symmetries of polyhedra.
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Cyclic Groups (15 Points)

We will begin by introducing the simplest type of group: the cyclic groups. If C is a cyclic group, then
every element c in C can be written as c = gk, for some g in G. Such an element g is called a generator of
the cyclic group (we will define generators for other groups later).

7. A symmetry operation on an object is a rotation, reflection, or possibly a combination of both,
that keeps the object looking the same as it was originally. These operations form a group under
composition, which is just applying one symmetry operation after another: If σ and τ are symmetry
operations, then στ is a symmetry operation that represents applying τ and then σ. Note that we
always read composed operations from right to left. The identity is just the operation of doing nothing,
and the inverse of a symmetry operation is just the operation that reverses it, returning to the original
position. Throughout this round, we will mostly be only considering the rotations, so you should only
consider rotations unless told otherwise.

a. [2] Consider a regular pentagonal pyramid, which you can build one with the provided Zome kits,
using just blue struts. Describe the elements of the (rotational) symmetry group of the pentagonal
pyramid. This will be the group of rotations of the pyramid that leaves it indistinguishable from
its original state.

b. [2] Show that this rotation group is cyclic, meaning that any rotation can be achieved by just
applying some rotation some number of times.

c. [2] Show that this rotation group is equivalent to the group of integers mod 5 under addition, in
the sense that each rotation can be associated to an integer mod 5 such that applying one rotation
after another is associated with the sum of the associated integers of the two rotations.

8. Let Cn be the cyclic group generated by an element, g, of order n.

a. [3] Show that Cn’s elements are exactly
{

1, g, g2, . . . , gn−1
}

.

b. [3] What is the order of gk, in terms of k and n? Given this, what must be true of k and n for
gk to be a(nother) generator?

c. [3] Prove that all cyclic groups are abelian.

It turns out that any finite cyclic group Cn is equivalent to the rotational symmetry group of a regular
ngonal pyramid, and also to the group of integers mod n under addition.

Dihedral Groups (10 Points)

We will now discuss a new type of group, called the dihedral groups. D2n, the dihedral group of order 2n,
is the symmetry group of a regular ngon, including both rotations and reflections (this is one case where
we will consider reflections). We can see that there are n ways to rotate the ngon (including the identity
operation), and that there are n reflection axes, giving a total of 2n symmetry operations as elements of

D2n. Let r be the element of D2n that represents a clockwise rotation by
360

n
degrees, and let s represent

reflection over a fixed axis. It is not difficult to see that r has order n and s has order 2, and that r and s
generate the entire group.

9. [2] Consider an equilateral triangle with vertices labeled 1, 2, and 3 in clockwise order, with 1 pointing
up, and let s represent reflection about the vertical axis. Draw the triangle after the symmetry operation
sr is performed, i.e., after first applying r and then applying s (by convention, operations are applied
from right to left, similar to function composition). It may help to build a triangle from the blue Zome
struts to help you visualize the symmetry group.

10. a. [5] Prove that srk has order 2 for all 0 ≤ k ≤ n− 1, and conclude that srk = r−ks.

b. [3] Show that D2n is not abelian when n > 2.

Note that, though D2n can be seen as the full symmetry group of a regular ngon, it can also be seen as
the rotation group of an ngonal prism. Thus, the cyclic and dihedral groups, the simplest groups, can be
thought of as the rotation groups of pyramids and prisms, the simplest polyhedra. To describe the rotation
groups of more complicated polyhedra, we will need to introduce two new types of groups.
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Symmetric Groups (20 Points)

Sn, the symmetric group on n letters, is the group of permutations of n objects. Formally, a permutation
is a function from from the set of first n positive integers to itself such that the function does not send any two
integers to the same integer. Intuitively, you can think of a permutation as a “reordering” of these n integers.
Since permutations can be thought of as functions, the group operation will be function composition, i.e.,
applying one permutation after another. Thus, Sn has order n!, which is the number of ways to permute the
n integers.

We will now introduce a very useful notation, known as cyclic notation, for representing elements of Sn.
In this notation, elements are written as products of disjoint cycles, where each number in a cycle is sent
to the next number, with the last number being sent to the first. For example, if we consider S3 acting on
the ordered set {1, 2, 3}, the element of S3 that sends 1 to 2, 2 to 1, and 3 to 3, resulting in {2, 1, 3}, can
be written in this notation as (12)(3). Cycles of length 1 can be omitted, giving the more concise (12). In
a similar fashion, (123) represents sending 1 to 2, 2 to 3, and 3 to 1, resulting in {2, 3, 1}. The identity
permutation is still written as 1. Note that (12) = (21) and (123) = (231) = (312). One can see after some
thought that this cycle decomposition is unique up to the ordering of the cycles and circular permutations
of the numbers in each cycle. By convention, we write the smallest number in the cycle first, and we will
order the cycles by the first number in each. From now on, all elements of symmetric groups will be written
in cyclic notation.

11. [2] Compute the inverses of the following permutations: (1 2), (1 2 3 4 5), and (1 2)(3 4 5)(6 8 7 9).
No proof is required.

12. [2] Compute the following product of permutations: (1 2 3)(2 3 4)(2 1 4). Recall that permutations
are applied from the right to the left. No proof is required.

13. a. [2] Using cyclic notation, write down all the elements of S3.

b. [3] Prove that S3 is equivalent to D6, the symmetry group of an equilateral triangle.

c. [3] Prove that Sn is not abelian for n > 2.

14. [3] Show that, when written as the product of disjoint cycles, the order of an element of a symmetric
group is the least common multiple of the lengths of all of its cycles. You can assume that disjoint
cycles commute, i.e., if σ and τ are disjoint cycles, then στ = τσ.

15. [5] Prove that Sn is generated by all of its 2-cycles, i.e., its transpositions. This means that you can
get any permutation in Sn by composing some number of transpositions.

Alternating Groups (20 Points)

Note: It is strongly recommended that you at least read the section on symmetric groups before doing these
problems.

An, the alternating group on n letters, is the group of even permutations of Sn. Recall that any element
of Sn can be written as a product of transpositions. An then consists of those elements of Sn that can be
written as a product of an even number of transpositions. Such elements are called even permutations,
while elements of Sn that can be written as a product of an odd number of transpositions are called odd
permutations.

16. a. [8] Prove that a permutation σ in Sn cannot be both even and odd: that is, show that σ cannot
be written both as a product of an even number of transpositions and a product of an odd number
of transpositions. Possible hint: begin by proving that 1 is even and not odd.

b. [4] Prove that the product of two even and of two odd permutations is even, while the product

of an even and an odd permutation is odd. Conclude that the order of An is
n!

2
for n > 1.

c. [3] Show that, when written in cyclic notation, the elements of An are those elements of Sn with
an even number of cycles of even length. Use this fact to list the elements of A4.
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17. [5] Prove that An is generated by all of its 3-cycles. This means that any permutation in An can be
achieved by just composing some number of 3-cycles.

Although Symmetric and Alternating groups may currently seem unrelated to symmetry groups, we will see
in the next section that the rotation groups of the regular polyhedra are just these types of groups.

Regular Polyhedra and Their Rotation Groups (40 Points)

Note: It is strongly recommended that you at least read the sections on symmetric and alternating groups
before doing the problems in the rest of this round.

The regular polyhedra, also known as the Platonic Solids, are polyhedra whose faces are all identical
regular polygons, and whose vertices are all identical, having the same number of these polygons meeting at
each vertex. The 5 Platonic Solids are listed below. These are the only five Platonic Solids, though we will
not prove this here.

The tetrahedron has 3 triangles around each vertex. It has 4 faces, 4 vertices, and 6 edges.
The cube has 3 squares around each vertex. It has 6 faces, 8 vertices, and 12 edges.
The octahedron has 4 triangles around each vertex. It has 8 faces, 6 vertices, and 12 edges.
The dodecahedron has 3 pentagons around each vertex. It has 12 faces, 20 vertices, and 30 edges.
The icosahedron has 5 triangles around each vertex. It has 20 faces, 12 vertices, and 30 edges.
It is highly encouraged that you construct all five of them with the provided Zome kits. The tetrahedron

and octahedron can be constructed with just green struts, and the other three can be constructed with just
blue struts.

Every polyhedron has a dual polyhedron, which can be constructed by placing a point at the center of
each of the original polyhedron’s faces, and connecting each resulting point with the resulting points of all
neighboring faces of the original polyhedron. It is straightforward to see that the tetrahedron is self-dual,
that the cube and octahedron are dual to each other, and that the icosahedron and dodecahedron are dual
to each other.

18. [5] Prove that the rotation group of a tetrahedron is equivalent to A4 by considering its effect on the
vertices of the tetrahedron, and by computing its order.

Group Actions

A group G is said to act on a set S if, for each element g of G, g acts like a function from S to S, sending
elements of S to elements of S. The only restrictions are that, if s is an element of S, 1(s) = s (the identity
sends s to itself) and if g and h are elements of G, h(g(s)) = (hg)(s), which means that applying g and then
h to s gives the same result as applying hg to s. From now on, we will write g(s) as g · s for brevity.

Examples of group actions are Sn acting on the set {1, . . . , n} by permutation, or D2n acting on the
vertices of an ngon by symmetry operations. We will soon study the action on the Platonic Solids by their
rotation groups.

The orbit of an element s of S under a group G, denoted Os. is the set of all elements of S that s can
be sent to by elements of G. In other words, Os = {g · s | g ∈ G}.

The stabilizer of s, denoted as Gs is the set of all elements of G that send s to itself. In other words,
Gs = {g ∈ G | g · s = s}.

19. [2] Show that, if G acts on S, and a and b are elements of S such that b = g · a for some g in G, then
a = g−1 · b.

20. a. [3] Find the number of elements in the orbit and stabilizer of the center of one of a cube’s faces
under its rotation group. Here, the rotation group of the cube acts on the face centers.

b. [3] Repeat part a, using the midpoint of an octahedron’s edge.

c. [8] Orbit-Stabilizer Theorem: Prove that if G acts on S, and s is an element of S, then

|G| = |Os| · |Gs|.
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d. [6] Use the Orbit-Stabilizer Theorem and your answers to parts a and b to find the order of the
cubic and octahedral rotation groups. In addition, prove that both of these rotation groups are
equivalent to S4 by finding a set of 4 objects in the cube and octahedron that can be completely
permuted by the respective rotation groups. (You needed to compute the order of the rotation
group first to make sure that it wasn’t a larger group that just contained S4 as a subgroup).

You have shown that the cubic and octahedral rotation groups are equivalent. This turns out to be a general
property of dual polyhedra, which means that the dodecahedral and icosahedral rotation groups are also
equivalent. This is because the vertices of one polyhedron correspond to the faces of its dual and vice versa,
while the edges in one polyhedron correspond to the edges in its dual.

21. [3] Use the Orbit-Stabilizer Theorem to determine the order of the icosahedral/dodecahedral rotation
group.

22. [10] Consider a dodecahedron. As shown in the figure below, you can inscribe a cube in the dodechae-
dron by drawing some of the diagonals of the dodecahedron’s pentagonal faces. By drawing all 5
diagonals of all 12 pentagonal faces, 5 cubes can be inscribed in a dodecahedron. Show that there is
some rotation that achieves each even permutation of these 5 cubes and, combined with your knowledge
of the order of this group, conclude that the dodecahedral, and thus the icosahedral, rotation group is
equivalent to A5.

Conclusion (0 Points)

We have now seen polyhedra whose rotation groups are the cyclic groups, the dihedral groups, and the
Platonic groups (tetrahedral, octahedral, icosahedral). It turns out that these are the only finite rotation
groups in 3 dimensions. We have actually developed all of the tools needed to prove this result, so if anyone
is interested in the proof, it will be provided in the solutions. Feel free to try to prove it yourself, though no
points will be given for it.

6


