1. Alice is planning a trip from the Bay Area to one of 5 possible destinations (each of which is serviced by only 1 airport) and wants to book two flights, one to her destination and one returning. There are 3 airports within the Bay Area from which she may leave and to which she may return. In how many ways may she plan her flight itinerary?

Solution. Alice has 3 ways of choosing a departing airport, 5 ways of choosing a location from there, and 3 ways to choose a returning airport, giving us $3 \cdot 5 \cdot 3 = 45$ possible flight itineraries.

2. Determine the largest integer n such that 2^n divides the decimal representation given by some permutation of the digits 2, 0, 1, and 5. (For example, 2^4 divides 2150. It may start with 0.)

Solution. The largest integer we can generate with such permutations is 5210, so clearly $n \leq 11$. We see that $2^{10} \cdot 2 = 4096$ and thus $n = 11$ is not possible. However, 2^{10} divides 5120, so we have $n = 10$.

3. How many rational solutions are there to $5x^2 + 2y^2 = 1$?

Solution. Note that this is equal to the number of minimal solutions to $5x^2 + 2y^2 = z^2$, where x, y, z are integers. Taking this equation mod 5, we get that $2y^2 = z^2$. But 2 is a quadratic nonresidue modulo 5, so there are no solutions.

4. Determine the greatest integer N such that N is a divisor of $n^{13} - n$ for all integers n.

Solution. Using Fermat’s Little Theorem, we see that $n^{13} \equiv n \mod 2, 3, 5, 7, \text{ and } 13$. Thus $2730 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13$ divides N. Meanwhile, $2^{13} - 2 = 3 \cdot 2730$. Since $3^{13} - 3$ is not divisible by 9, we must have $N = 2730$.

5. Three balloon vendors each offer two types of balloons – one offers red & blue, one offers blue & yellow, and one offers yellow & red. I like each vendor the same, so I must buy 7 balloons from each. How many different possible triples (x, y, z) are there such that I could buy x blue, y yellow, and z red balloons?

Solution. First, we note that (x, y, z) is an ordered partition of 21. By stars and bars, there are $\binom{23}{2} = 253$ of those. However, since each color is not sold by one of the vendors, we must have $x, y, z \leq 14$. Now, there are $\binom{8}{2} = 28$ partitions where $x \geq 15$. Since no two of x, y, z can simultaneously be ≥ 15, we have $253 - 3 \cdot 28 = 169$ partitions where no part is greater than 14.

Now, we claim that all of these remaining partitions are indeed possible. Suppose we have (x, y, z) satisfying the conditions. Without loss of generality, assume that $x \leq 7$ (by pigeonhole) and that y is the largest of the three. Then, buy 7 yellow balloons from the blue and yellow vendor, and x blue balloons from the blue and red vendor. Then, buy $7 - x$ red balloons from the blue and red vendor - this is possible because otherwise $z + x \leq 7$, and so $y > 14$ which contradicts our assumption. Finally, we buy the remainder of the balloons from the yellow and red vendor. This gives us a valid way to buy balloons satisfying (x, y, z), and thus we have 169 feasible possibilities of balloon buying.

6. There are 30 cities in the empire of Euleria. Every week, Martingale City runs a very well-known lottery. 900 visitors decide to take a trip around the empire, visiting a different city
each week in some random order. 3 of these cities are inhabited by mathematicians, who will talk to all visitors about the laws of statistics. A visitor with this knowledge has probability 0 of buying a lottery ticket, else they have probability 0.5 of buying one. What is the expected number of visitors who will play the Martingale Lottery?

Solution. Consider a random visitor Eve. Eve’s trip is a permutation of the 30 cities, and since she visits them in a random order, each possible permutation is equally likely. Restricting out focus to the ordering of Martingale City and the three mathematician cities, we see that Eve has a \(\frac{1}{4}\) chance of visiting Martingale City before the other three. In this case, she has a \(\frac{1}{2}\) chance of buying a lottery ticket; in the other cases, she has probability 0 of buying one. Thus, Eve has a \(\frac{1}{8}\) chance in total of buying a lottery ticket.

This holds independently for all 900 visitors, giving us an expected value of \(\frac{225}{2}\) lottery tickets sold.

7. At Durant University, an A grade corresponds to raw scores between 90 and 100, and a B grade corresponds to raw scores between 80 and 90. Travis has 3 equally weighted exams in his math class. Given that Travis earned an A on his first exam and a B on his second (but doesn’t know his raw score for either), what is the minimum score he needs to have a 90% chance of getting an A in the class? Note that scores on exams do not necessarily have to be integers.

Solution. The probability distribution of Travis’s average score after the first two exams is as follows:

![Graph of probability distribution]

where the area underneath the graph must be 1. Thus, the height of the triangle is \(\frac{1}{5}\). To find the 10th percentile of this graph, we look for a value \(x\) for which the area it encloses is \(\frac{1}{10}\), i.e. \(\frac{1}{10} \cdot \frac{x - 85}{25} = \frac{1}{10}\). This gives us \(x = \sqrt{5}\). Travis will then get an A in the class if \(\frac{2(85 + \sqrt{5}) + n}{3} \geq 90\), or \(170 + 2\sqrt{5} + x \geq 270\). This gives \(x \geq 100 - 2\sqrt{5}\).

8. Two players play a game with a pile with \(N\) coins on a table. On a player’s turn, if there are \(n\) coins, the player can take at most \(\frac{n}{2} + 1\) coins, and must take at least one coin. The player who grabs the last coin wins. For how many values of \(N\) between 1 and 100 (inclusive) does the first player have a winning strategy?

Solution. We claim that the second player can only win when \(N = 3(2^k - 1), k \geq 1\). To show this, we use induction. First, we see easily that player 1 wins when \(N = 1\) and \(N = 2\) by grabbing all the coins, but they cannot win when \(N = 3\). Now, suppose we have found the winning strategy for all \(k < N\). Let \(n = 3(2^m - 1)\) be the largest such number that is less than \(N\). Then if \(N - (N/2 + 1) \leq n\), the first player can take away enough coins so that there are \(n\) left on the table, and then they will win. But the statement \(N - (N/2 + 1) \leq n\) is equivalent to \(N/2 - 1 \leq n\), which means \(N \leq 2(3(2^m - 1) + 1) = 2(3 \cdot 2^m - 2) = 3(2^{m+1} - 1) - 1\). Thus the next value of \(N\) for which the second player can win is \(N = 3(2^{m+1} - 1)\), completing the induction. Thus, the first player has a winning strategy for 95 values between 1 and 100.
9. There exists a unique pair of positive integers k, n such that k is divisible by 6, and $\sum_{i=1}^{k} i^2 = n^2$. Find (k, n).

Solution. The sum evaluates to $\frac{k(k + 1)(2k + 1)}{6}$. Since $k, k+1, 2k+1$ are pairwise relatively prime, so are the integers $\frac{k}{6}, k + 1, 2k + 1$, and since their product is a perfect square, each itself is a perfect square. Since $k = (2k + 1) - (k + 1)$, and $k + 1$ and $2k + 1$ have the same parity, k is either odd or divisible by 4. But we are given that k is divisible by 6, so k is not odd and is thus divisible by 4. Since it’s divisible by both 4 and 6, it’s divisible by 12, so say $k = 12m’$. Then $k/6 = 2m’$ is a perfect square, so m is even, and k is in fact divisible by 24. So we have $k = 24m$, and all of $4m, 24m + 1, 48m + 1$ are perfect squares. If we make the obvious choice of $m = 1$, we get 4, 25, 49, all of which are perfect squares, and so $k = 4 \cdot 6 = 24$, and $n^2 = 4 \cdot 25 \cdot 49$, and so $n = 2 \cdot 5 \cdot 7 = 70$. Thus, the answer is $(24, 70)$.

10. A partition of a positive integer n is a summing $n_1 + \ldots + n_k = n$, where $n_1 \geq n_2 \geq \ldots \geq n_k$. Call a partition perfect if every $m \leq n$ can be represented uniquely as a sum of some subset of the n_i’s. How many perfect partitions are there of $n = 307$?

Solution. We claim that the number of partitions of n is equivalent to the number of ordered factorizations of $n + 1$. Note that since 1 needs to be represented, $n_k = 1$. Suppose we have k_1 1’s in our partition. Then $k_1 + 1$ must be the next largest number in the partition. Similarly, the next largest must be $(k_1 + 1)(k_2 + 1)$, where we have k_2 repetitions of $k_1 + 1$. This continues, until we have k_i repetitions of each $(k_1 + 1) \ldots (k_{i-1} + 1)$ for all i from 1 to a for some a. Lastly, we have $k_1 \cdot 1 + k_2(k_1 + 1) + \ldots + k_a(k_1 + 1) \ldots (k_{a-1} + 1) = n$, which simplifies to $(k_1 + 1) \ldots (k_a + 1) = n + 1$. Thus, the number of choices we have for k_1, \ldots, k_a is equal to the number of ordered factorings of $n + 1$. For $n = 307$, we have 308 = $2 \cdot 3 \cdot 53$, which gives us 13 possible ordered factorings.

P1. Find two disjoint sets N_1 and N_2 with $N_1 \cup N_2 = \mathbb{N}$, so that neither set contains an infinite arithmetic progression.

Solution. One possible answer is to give $N_1 = \{1\} \cup \{4, 5, 6\} \cup \{11, 12, 13, 14, 15\} \cup \ldots$ and $N_2 = \{2, 3\} \cup \{7, 8, 9, 10\} \cup \ldots$.

It is clear here that we cannot have an arithmetic progression in either set, because both of them contain arbitrarily large intervals with no elements of the set in them.

- 2 points for writing a correct distribution into 2 sets
- 4 points for correct justification

P2. Suppose $k > 3$ is a divisor of $2^p + 1$, where p is prime. Prove that $k \geq 2p + 1$.

Solution. WLG assume k is prime. We have $2^p + 1 \equiv 0 \mod k$, and thus $2^p \equiv -1 \mod k$. This means $2^{2p} \equiv 1 \mod k$, and we see that $2p$ is the order of 2 mod k. Now, $2^{k-1} \equiv 1 \mod k$ by FLT, so $2p | k - 1$ and so $k \geq 2p + 1$.

- 1 point for looking at the problem modulo k
- 1 point for mentioning $2^{k-1} \equiv 1$ by FLT
- 2 points for proving $2p$ is the order of 2 mod k
- 2 pts for full solution